The Photon Counting Histogram: Statistical Analysis of Single Molecule Populations

E. Gratton

Laboratory for Fluorescence Dynamics University of California, Irvine

Transition from FCS

- The Autocorrelation function only depends on fluctuation duration and fluctuation density (independent of excitation power)
- PCH: distribution of intensities (independent of time)

Fluorescence Trajectories

Photon Count Histogram (PCH)

Can we quantitate this?

What contributes to the distribution of intensities?

Contribution from the detector noise Fixed Particle Noise (Shot Noise)

Contribution from the profile of illumination The Point Spread Function (PSF)

One Photon Confocal:

$$I_{3DG}(r,z) = \exp\left(-\frac{2r^2}{\omega_0^2} - \frac{2z^2}{z_0^2}\right)$$

Two Photon:

$$_{GL^{2}}(r,z) = \frac{4\omega_{0}^{4}}{\pi^{2}\omega^{4}(z)} \exp\left(-\frac{4r^{2}}{\omega^{2}(z)}\right)$$
$$\omega^{2}(z) = \omega_{0}^{2}\left(1 + \left(\frac{z}{z_{R}}\right)^{2}\right)$$
$$z_{R} = \frac{\pi\omega_{0}^{2}}{\lambda}$$

Single Particle PCH

Have to sum up the poissonian distributions for all possible positions of the particle within the PSF

$$p^{(1)}(k) = \frac{1}{V_0} \int_{V_0} Poi(k, \varepsilon \overline{PSF}(\vec{r})) d\vec{r}$$

- What if I have two particles in the PSF?
- Have to calculate every possible position of the second particle for each possible position of the first!

Contribution from several particles of same brightness Combining Distributions

Combining Distributions

Convolution

- Sum up all combinations of two probability distributions (joint probability distribution)
- Distributions (particles) must be independent

$$p^{(1+2)}(k) = \sum_{r=0}^{r=k} p^{(1)}(k-r) \cdot p^{(2)}(r)$$

Contribution from particles of different brightness

How Many Particles Do We Have in the PSF?

P(n,N) = Poi(n,N)

Particle occupation fluctuates around average, N with a poissonian distribution

Calculate poisson weighted average of n particle distributions

$$PCH(k,N) = \sum p^{(n)}(k) \cdot P(n,N)$$

Multiple Species

• Species are independent so just convolute!

Recap: Factors that contribute to the final broadening of the PCH

Method

- Sum up Poisson distributions from all possible arrangements and number of fluorophores in excitation volume (PSF)
 - Intensity weighted sum of all possible single particle histograms (Poisson functions)
 - Convolution to get multiple particle histograms
 - Number probability weighted sum of multiple particle histograms
 - Convolution to get multi-species histograms

Chen et al., Biophys. J., 1999, 77, 553.

Fitting

$$\chi^{2} = \frac{\sum_{k} \left(M \frac{PCH_{model}(k) - PCH_{observed}(k)}{\sqrt{M \cdot PCH_{observed}(k) \cdot (1 - PCH_{observed}(k))}} \right)^{2}}{k_{max} - d}$$

M is number of observations

d is number of fitting parameters

Chen et al., *Biophys. J.*, **1999**, 77, 553.

Model Test

Hypothetical situation: Protein Interactions

- 2 proteins are labeled with a fluorophore
- Proteins are soluble
- How do we assess interactions between these proteins?

Dimer has double the brightness

 $\mathcal{E} = \mathcal{E}_{monomer}$

 $\varepsilon = 2 \times \varepsilon_{monomer}$

All three species are present in equilibrium mixture

Typical one photon $\varepsilon_{monomer}$ = 10,000 cpsm

Photon Count Histogram (PCH)

Simulation Solution

Global Fitting: Fit Data Sets Simultaneously

What we measure is the number of particles in the PSF. How Do We Get Concentrations?

- N is defined relative to PSF volume
- One photon:

$$V_{3DG} = w_0^2 z_0 (\pi / 2)^{3/2} \qquad V_{PSF} = \int PSF(\vec{r}) d\vec{r}$$

• Two photon:

$$V_{GL2} = \frac{\pi W_0^4}{\lambda}$$

- Definition is same as for FCS
- Can use FCS to determine w_0 (and maybe z_0)

 $w_0 = 0.21 \text{ um}, z_0 = 1.1 \text{ um}, V_{PSF} = 0.091 \text{ um}^3, C = 23 \text{ nM}$

How to Improve Accuracy

- Minimize sources of instrument noise
 - PSF heterogeneity
 - Shot noise
- Maximize particle burst amplitudes

Effect of Brightness

ε = 10,000 cpsm

ε = 100,000 cpsm

Saturation Effect

Rhodamine 110 on the Zeiss Confocor 3

Laser power is not an infinite source of brightness!

Concentration Effect

Note: if N is too low, experiment becomes photon limited

Sampling Time Effect

Again, shorter sampling leads to photon limited acquisition

In general sample as long as possible without diffusion averaging

Wu and Mueller, *Biophys. J.*, 2005, 89, 2721.

PSF X,Y, and Z Dimensions Don't Matter

←_X →

Functional Form DOES Matter

Functional Form Matters for PCH

Point Spread Function Effects

$$p^{(1)}(k) = \frac{1}{V_0} \int_{V_0} Poi(k, \varepsilon \overline{PSF}(\vec{r})) d\vec{r}$$

This equation will work for ANY PSF shape.

Alternative Methods

- Fluorescence Cumulant Analysis (FCA)
 - Mueller Biophys. J. 2004, 86, 3981.
 - Similar to method of moments
 - Any distribution can be described by a sum of moments
 - Simple algebraic formulas for cumulants
- Fluorescence Intensity Distribution Analysis (FIDA)
 - Kask et al. PNAS **1999**, 96, 13756.
 - Fits PSF in fourier transformed space
 - Fits to non-physical parameterized PSF

2D PCH

Calculating the 2D PCH Function

$$PCH(\varepsilon_{A},\varepsilon_{B},N;k_{A},k_{B}) = \binom{k}{k_{A}} (\varepsilon_{A} / \varepsilon)^{k_{A}} (1 - \varepsilon_{A} / \varepsilon)^{k-k_{A}} \cdot PCH(\varepsilon,N;k)$$

the binomial distribution:

$$P(x,k,N) = \binom{N}{k} x^k (1-x)^{N-k}$$

We can find the 2D PCH function from the single channel PCH function!

Chen et al., *Biophys. J.*, **2005**, *88*, 2177-2192.

Summary

- The photon count histogram can be modeled by integration of component noise sources
- Heterogeneous samples can be resolved through global analysis
- Accuracy is related to magnitude of particle fluctuations relative to instrument fluctuations